NP

Cho đường tròn (O;R) và điểm A thuộc (O). Một góc vuông xAy quay quanh A và luôn thỏa mãn Ax,Ay cắt (O). Gọi các giao điểm thứ hai của Ax;Ay với (O) lần lượt là B;C. Đường tròn đường kính AO cắt AB;AC tại các điểm thứ hai tương ứng là M;N. Tia OM cắt (O) tại P. Gọi H là trực tâm tam giác AOP.Chứng minh: a,Tứ giác AMON là hình chứu nhật b,MN//BC c,Tứ giác PHOB nội tiếp d, Xác định vị trí của góc xAy sao cho tam giác AMN có diện tích lớn nhất

NT
17 tháng 3 2023 lúc 13:40

a: góc OMA=1/2*sđ cung OA=90 độ

góc ONA=1/2*sđ cung OA=90 độ

Vì góc OMA=góc ONA=góc MAN=90 độ

nên AMON là hình chữ nhật

b: ΔOAB cân tại O

mà OM là đường cao

nên Mlà trung điểm của AB

ΔOAC cân tại O

mà ON là đường cao

nên N là trung điểm của AC

Xet ΔACB có AM/AB=AN/AC

nên MN//BC

 

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
LA
Xem chi tiết
NT
Xem chi tiết
DK
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
TQ
Xem chi tiết
MT
Xem chi tiết
FF
Xem chi tiết