H24

Cho đường tròn (O;R) và điểm A cố định ở ngoài đường tròn . Vẽ đường thẳng d vuông góc với OA tại A . Trên d lấy điểm M . Qua M kẻ 2 tiếp tuyến ME,MF tới đường tròn (O;R) tiếp điểm lần lượt là E và F . Nối EF cắt OM tại H,cắt OA tại B

a) Chứng minh OM vuông góc với EF

b) Cho biết R`=6` cm,OM`=10` cm . Tính OH

c) Chứng minh 4 điểm A,B,H,M cùng thuộc một đường tròn

NT
3 tháng 12 2023 lúc 22:34

a:Xét (O) có

MF,ME là tiếp tuyến

Do đó: MF=ME

=>M nằm trên đường trung trực của FE(1)

OE=OF

=>O nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra OM là đường trung trực của EF

=>OM\(\perp\)EF tại H và H là trung điểm của EF

b: ΔOMF vuông tại F

=>\(FO^2+FM^2=OM^2\)

=>\(FM^2=10^2-6^2=64\)

=>\(FM=\sqrt{64}=8\left(cm\right)\)

Xét ΔOFM vuông tại F có FH là đường cao

nên \(OH\cdot OM=OF^2\)

\(\Leftrightarrow OH\cdot10=6^2=36\)

=>OH=36/10=3,6(cm)

c: Xét tứ giác BHMA có

\(\widehat{BHM}+\widehat{BAM}=90^0+90^0=180^0\)

=>BHMA là tứ giác nội tiếp

=>B,H,M,A cùng thuộc một đường tròn

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
XD
Xem chi tiết
NL
Xem chi tiết
4T
Xem chi tiết
VT
Xem chi tiết
DD
Xem chi tiết
BM
Xem chi tiết
TN
Xem chi tiết
LH
Xem chi tiết