LT

Cho đường tròn (O;R) lấy ba điểm A,B,C sao cho dây cung AB = R, BC= R\(\sqrt{2}\)và tia BO nằm giữa hai tia BA và BC. Tính số đo các cung nhỏ AB,BC, và AC

AV
5 tháng 2 2018 lúc 21:07

+) Có A,B thuộc đường tròn (O;R) 

=> OA = OB = R Mà AB = R

=> OA = OB = AB => tam giác AOB đều ( định nghĩa tam giác đều)

=> góc AOB = 60 độ ( tính chất tam giác đều)

Trong đường tròn (O;R) có góc AOB là góc ở tâm chắn cung AB nhỏ 

=> số đo cung AB nhỏ = góc AOB = 60 độ (tính chất góc ở tâm )

+) Có B,C thuộc đường tròn (O;R) => OB=OC=R

Có OB^2 + OC^2 = R^2 + R^2= 2*R^2 = BC^2 ( vì BC = R\(\sqrt{2}\) )

=> tam giác BOC vuông ở O ( định lý Py-ta-go đảo )

=> góc BOC = 90 độ

Trong đường tròn (O;R) có góc BOC là góc ở tâm chắn cung BC nhỏ 

=> góc BOC = số đo cung BC nhỏ ( tính chất góc ở tâm) => số đo cung BC nhỏ = 90 độ

+) Vì tia BO nằm giữa 2 tia BA và BC nên B nằm giữa A và C

=> số đo cung AB nhỏ + số đo cung BC nhỏ = số đo cung AC nhỏ

=> số đo cung AC nhỏ = 60 độ + 90 độ = 150 độ

k cho mk nha !!!!!!!!!!!

Bình luận (0)

Các câu hỏi tương tự
AF
Xem chi tiết
HL
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết
HN
Xem chi tiết
TC
Xem chi tiết