KF

Cho đường tròn (�;�), đường kính ��.� là điểm nằm trên đường tròn (�;�) và ��<�� (  khác �). Vẽ �� vuông góc với �� tại . Tiếp tuyến tại  của đường tròn (�;�) cắt �� tại .

a) Chứng minh  là trung điểm của �� và �� là tiếp tuyến của đường tròn (�;�).

b) Gọi  là trung điểm của ��. Gọi  là giao điểm của �� với (�;�). Chứng minh △��� đồng dạng △��� và ba điểm �,�,� thẳng hàng.

NT
14 tháng 12 2023 lúc 20:28

a: Ta có: ΔOBM cân tại O

mà OH là đường cao

nên H là trung điểm của BM và OH là phân giác của góc MOB

Xét ΔOBN và ΔOMN có

OB=OM

\(\widehat{BON}=\widehat{MON}\)

ON chung

Do đó: ΔOBN=ΔOMN

=>\(\widehat{OBN}=\widehat{OMN}=90^0\)

=>NM là tiếp tuyến của (O)

b: Xét (O) có

ΔMAB nội tiếp

AB là đường kính

Do đó: ΔMAB vuông tại M

Xét (O) có

\(\widehat{MAB}\) là góc nội tiếp chắn cung MB

\(\widehat{MBN}\) là góc tạo bởi tiếp tuyến BN và dây cung BM

Do đó: \(\widehat{MAB}=\widehat{MBN}\)

=>\(\widehat{MAB}=\widehat{HBN}\)

Xét ΔMAB vuông tại M và ΔHBN vuông tại H có

\(\widehat{MAB}=\widehat{HBN}\left(cmt\right)\)

Do đó: ΔMAB đồng dạng với ΔHBN

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
TA
Xem chi tiết
CD
Xem chi tiết
NN
Xem chi tiết
LH
Xem chi tiết
DM
Xem chi tiết
FM
Xem chi tiết
DD
Xem chi tiết
CT
Xem chi tiết