Cho đường tròn (O;R) đường kính AB và dây CD vuông góc với nhau (CA<CB).Hai tia BC và DA cắt nhau tại E. Từ E kẻ EH vuông góc với AB tại H; EH cắt CA tại F. CHứng minh rằng :
a. Tứ giác CDEF nội tiếp đường tròn.
b. Ba điểm B,D,F thẳng hàng
c. HC là tiếp tuyến của đường tròn O.
d. BC.BE = BD.BF
Cho đường tròn (O;R) đường kính AB và dây CD vuông góc với nhau( CA<CB ).Hai tia BC và DA cắt nhau tại E. Từ E kẻ EH vuông góc với AB tại H; EH cắt CA tại F. CHứng minh rằng :
1.Tứ giác CDEF nội tiếp đường tròn.
2.Ba điểm B,D,F thẳng hàng
3.HC là tiếp tuyến của đường tròn O.
Bài 5. ( 3,0 điểm ) Cho đường tròn ( O ; R ) đường kính AB và dây CD vuông góc với nhau tại M ( CA < CB ) . Hai tia BC và DA cắt nhau tại E. Từ E kẻ EH vuông góc với AB tại H. a ) Chứng minh : HEC=CAB. b ) Chứng minh : HC là tiếp tuyến của đường tròn ( O ; R ) . c ) Tiếp tuyến tại A của đường tròn ( O ) cắt HC tại N. Chứng minh đường thẳng NB đi qua trung điểm của đoạn thẳng CM .
mk cần gấp
Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC<AB. E là một điểm thuộc BC(E# B,C).Tia AE cắt đường tròn tại điểm thứ 2 là D, kẻ EH vuông góc với AB tại H
a. Cm ACEH nội tiếp
b.Tia CH cắt (O) tại điểm thứ hai là F. Cm EH//DF
c.CMR đường tròn ngoại tiếp tam giác CHO đi qua D
d. Gọi I và K lần lượt là hình chiếc vuông góc của F trên các đường thẳng CA và CB. CMR:AB,DF,IK đi qua 1 điểm
Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC<AB. E là một điểm thuộc BC(E# B,C).Tia AE cắt đường tròn tại điểm thứ 2 là D, kẻ EH vuông góc với AB tại H
a. Cm ACEH nội tiếp
b.Tia CH cắt (O) tại điểm thứ hai là F. Cm EH//DF
c.CMR đường tròn ngoại tiếp tam giác CHO đi qua D
d. Gọi I và K lần lượt là hình chiếc vuông góc của F trên các đường thẳng CA và CB. CMR:AB,DF,IK đi qua 1 điểm
Giúp mình câu d với
Cho ∆ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H.
1) Chứng minh tứ giác ACEH là tứ giác nội tiếp.
2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF.
3) Chứng minh rằng đường tròn ngoại tiếp ∆CHO đi qua điểm D.
4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.
Cho ∆ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H.
1) Chứng minh tứ giác ACEH là tứ giác nội tiếp.
2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF.
3) Chứng minh rằng đường tròn ngoại tiếp ∆CHO đi qua điểm D.
4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.
Cho ∆ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H.
1) Chứng minh tứ giác ACEH là tứ giác nội tiếp.
2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF.
3) Chứng minh rằng đường tròn ngoại tiếp ∆CHO đi qua điểm D.
4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.
Cho đường tròn (O: R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
1. Chứng minh tứ giác BHFE là tứ giác nội tiếp.
2. Chứng minh: EF EA EC EB . . .
3. Tính theo R diện tích FEC khi H là trung điểm của OA.
4. Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
giúp mình ý 3 với ạ