MN

Bài 5. ( 3,0 điểm ) Cho đường tròn ( O ; R ) đường kính AB và dây CD vuông góc với nhau tại M ( CA < CB ) . Hai tia BC và DA cắt nhau tại E. Từ E kẻ EH vuông góc với AB tại H. a ) Chứng minh : HEC=CAB. b ) Chứng minh : HC là tiếp tuyến của đường tròn ( O ; R ) . c ) Tiếp tuyến tại A của đường tròn ( O ) cắt HC tại N. Chứng minh đường thẳng NB đi qua trung điểm của đoạn thẳng CM .

NT
18 tháng 5 2021 lúc 19:10

a) Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)

Xét tứ giác EHAC có 

\(\widehat{EHA}\) và \(\widehat{ECA}\) là hai góc đối

\(\widehat{EHA}+\widehat{ECA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: EHAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: \(\widehat{HEC}+\widehat{HAC}=180^0\)(hai góc đối)

mà \(\widehat{HAC}+\widehat{BAC}=180^0\)(Hai góc kề bù)

nên \(\widehat{HEC}=\widehat{CAB}\)(Đpcm)

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
TA
Xem chi tiết
TT
Xem chi tiết
HP
Xem chi tiết
NN
Xem chi tiết
FM
Xem chi tiết