H24

Cho đường tròn (O;R) dây AB khác đường kính. Qua O vẽ đường thẳng vuông góc với AB tại H, cắt tiếp tuyến tại A của đường tròn ở O

a) CM: CB là tiếp tuyến của đường tròn (O)

b) kẻ đường thẳng qua A song song với CO cắt đường tròn (O) tại D. Vẽ AK vuông góc với BD. CM: 3 điểm BOD thẳng hàng và tam giác AKD đồng dạn với tam giác CAO

c) Đường thẳng CO cắt (O) tại hai điểm M và N, (M nằm giữa C và N). CM: MC.NH=MH.NC

NT
2 tháng 12 2023 lúc 23:18

a: Sửa đề: cắt tiếp tuyến tại A của đường tròn ở C

ΔOAB cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOB

Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔOAC=ΔOBC

=>\(\widehat{OAC}=\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

b:ΔOAC=ΔOBC

=>CB=CA

=>C nằm trên đường trung trực của AB(1)

OA=OB

=>O nằm trên đường trung trực của AB(2)

từ (1) và (2) suy ra OC là đường trung trực của BA

=>OC\(\perp\)AB

mà OC//AD

nên AB\(\perp\)AD

=>ΔABD vuông tại A

Ta có: ΔABD vuông tại A

=>ΔABD nội tiếp đường tròn đường kính DB

mà ΔABD nội tiếp (O)

nên O là trung điểm của DB

=>D,O,B thẳng hàng

Xét ΔAKD vuông tại K và ΔCAO vuông tại A có

\(\widehat{ADK}=\widehat{COA}\)(hai góc so le trong, AD//CO)

Do đó: ΔAKD\(\sim\)ΔCAO

 

Bình luận (0)

Các câu hỏi tương tự
LA
Xem chi tiết
TK
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
NL
Xem chi tiết
PH
Xem chi tiết
NP
Xem chi tiết
TC
Xem chi tiết