b: Xét tứ giác AMON có \(\widehat{AMO}+\widehat{ANO}=180^0\)
nên AMON là tứ giác nội tiếp
b: Xét tứ giác AMON có \(\widehat{AMO}+\widehat{ANO}=180^0\)
nên AMON là tứ giác nội tiếp
cho đường tròn (O,R) và điểm A cố định nằm ngoài dường tròn . Qua A vẽ cát tuyến ABC (B nằm giữa A và C) .Kẻ AM,AN là các tiếp tuyến với (O)(M và N thuộc O), M thuộc nửa mặt phẳng bờ AC có chứa điểm O, gọi H là trung điểm của BC.a) cm AM^2=AB,AC b)cm 4 điểm A,M,H,N thuộc một đường tròn c) đoạn thằng AO cắt đường tròn (O) tại I.Cm I là tâm dường tròn nội tiếp tam giác AMN
Cần hỗ trợ
Cho điểm M nằm ngoài đường tròn (O; R). Vẽ tiếp tuyến MA ( A là tiếp điểm), cát tuyến MBC ( B nằm giữa M và C) và O nằm trong góc AMC. Vẽ OK vuông góc BC tại K . a) CM : tứ giác MAOK nội tiếp đường tròn. Xác định tâm và bán kính đường tròn này.
b) vẽ dây cung AI // BC . CM góc IAK + góc AMO = 90 độ.
c) IK cắt (o) tại điểm thứ hai là D. CM MD là tiếp tuyến (o).
Cho đường tròn (O) và điểm A ở ngoài đường tròn. Vẽ hai tiếp tuyến AM. AN với đường tròn (M, N là tiếp điểm) và cát tuyến ABC không qua O (B nằm giữa A và C). Gọi I là trung điểm của BC. a) Chứng minh 4 điểm A, I, O, N cùng nằm trên một đường tròn. b) Chứng minh: AB.AC = AM². c) Chứng minh: SAMI/SANI=MI/NI giúp mình câu c với ạ
Cho đường tròn (O) và điểm A ở ngoài đường tròn. Vẽ hai tiếp tuyến AM. AN với đường tròn (M, N là tiếp điểm) và cát tuyến ABC không qua O (B nằm giữa A và C). Gọi I là trung điểm của BC. a) Chứng minh 4 điểm A, I, O, N cùng nằm trên một đường tròn. b) Chứng minh: AB.AC = AM². c) Chứng minh: SAMI/SANI=MI/NI
Cho đường tròn (O), điểm A nằm ngoài đường tròn (O). Kẻ hai cát tuyến ABC, ADE (với B nằm giữa A và C, D nằm giữa A và E, cát tuyến ABC nằm khác phía với cát tuyến ADE bờ AO). Gọi F là điểm di động trên cung nhỏ BD của (O) (F khác B và D). Vẽ (I) là tâm đường tròn ngoại tiếp tam giác AFB, (J) là tâm đường tròn ngoại tiếp tam giác AFD.
a) IO cắt BF tại K, JO cắt BF tại L. Chứng minh tứ giác OKFL nội tiếp một đường tròn.
b) IJ cắt AF tại M. Chứng minh: AC. MK = AE. ML
c) CJ cắt EI tại N. Chứng minh: N nằm trên đường tròn tâm O.
cho đường tròn o và điểm M nằm ngoài đường tròn qua M vẽ tiếp tuyến tiếp xúc với O tại A và cát tuyến MBC đi qua O . Đường tròn đường kính MB cắt MA tại E. Cm sd cung nhỏ AC =sd cung nhỏ BA và BE
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn sao cho OM=2R. Từ M vẽ tiếp tuyến MA và MB với đường (O).
a. CM: Tứ giác MAOB nội tiếp và MO vuông góc AB
b. CM: Tam giác AMB đều và tính AM theo R
c. Qua điểm C thuộc cung nhỏ AB vẽ tiếp tuyến với đường tròn (O) cắt AM tại E và cắt MB tại F. OF cắt AB tại K. OE cắt AB tại H. CM:chu vi tam giác MEF không đổi khi điểm C chạy trên cung nhỏ AB.
d. CM: EK vuông góc OF
e. CM: EF=2HK
Từ điểm A nằm ngoài đường tròn (O),kẻ tiếp tuyến AM với đường tròn(M là tiếp điểm). Kẻ dây MN vuông góc với AO tại H. Kẻ cát tuyến ABC với đường tròn( điểm B nằm giữa A và C). a)CM: AN là tiếp tiếp tuyến. b)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại K, gọi I là trung điểm của BC. CM:OI.OK=ON.ON(ON bình) và 3 điểm K,H,N thẳng hàng