TH

Cho đường tròn (O) và một điểm M nằm ngoài đường tròn . Từ M kẻ 2 tiếp tuyến MA;MB ( A;B là tiếp điểm ) . Gọi I là giao điểm của MO và AB .

a) Từ B kẻ đường kính BC của (O) , MC cắt (O) tại D ( D khác C) Chứng minh MD.MC=MI.MO

b) Từ O kẻ đường thẳng vuông góc với MC cắt BA tại F . Chứng minh FC là tiếp tuyến của (O)

NH
1 tháng 5 2020 lúc 20:27

a.Vì MA,MB là tiếp tuyến của (O)

→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o

→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM

b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I

→OA2=OI.OM→OA2=OI.OM

Vì OF⊥CM=EOF⊥CM=E

→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp

→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn

→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^

→FC→FC là tiếp tuyến của (O)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DT
Xem chi tiết
KL
Xem chi tiết
TN
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết