LP

1/ Từ điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA và MB đến đường tròn O (A,B là hai tiếp điểm) MO cắt AB tại H .Kẻ đường kính BC của đường tròn (O), đường thẳng qua O vuông góc MC lần lượt cắt MC,BA tại K,E.

a) Cho OA = 9 ,OM = 15 .Tính MA và ^AMB ?(kết quả làm tròn đến phút)

b) Chứng minh MA . AE = OA . AC

c) Chứng minh EC là tiếp tuyến của (O).

                               giải chi tiết giúp mik vs nhé

 

NT
28 tháng 12 2023 lúc 19:11

a: Ta có: ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(MA^2=15^2-9^2=144\)

=>\(MA=\sqrt{144}=12\left(cm\right)\)

Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{AO}{OM}=\dfrac{3}{5}\)

nên \(\widehat{AMO}\simeq36^052'\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}\simeq73^044'\)

c: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=OC^2\)

Xét ΔOHE vuông tại H và ΔOKM vuông tại K có

\(\widehat{HOE}\) chung

Do đó: ΔOHE đồng dạng với ΔOKM

=>\(\dfrac{OH}{OK}=\dfrac{OE}{OM}\)

=>\(OK\cdot OE=OH\cdot OM\)

=>\(OK\cdot OE=OC^2\)

=>\(\dfrac{OK}{OC}=\dfrac{OC}{OE}\)

Xét ΔOKC và ΔOCE có

\(\dfrac{OK}{OC}=\dfrac{OC}{OE}\)

\(\widehat{KOC}\) chung

Do đó: ΔOKC đồng dạng với ΔOCE

=>\(\widehat{OKC}=\widehat{OCE}\)

=>\(\widehat{OCE}=90^0\)

=>EC là tiếp tuyến của (O)

Bình luận (0)

Các câu hỏi tương tự
LP
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết
DD
Xem chi tiết
SD
Xem chi tiết
MA
Xem chi tiết
KL
Xem chi tiết