H24

Cho đường tròn (O) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường tròn (B là tiếp điểm).
1) Tính số đo các góc của tam giác OAB.
2) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC là tiếp tuyến của đường tròn (O).
3) Đoạn thẳng AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.

NT
28 tháng 8 2021 lúc 23:09

1: Xét ΔOAB vuông tại B có 

\(\sin\widehat{OAB}=\dfrac{OB}{OA}=\dfrac{1}{2}\)

\(\Leftrightarrow\widehat{OAB}=30^0\)

\(\Leftrightarrow\widehat{BOA}=60^0\)

2: Ta có: C và B đối xứng nhau qua OA

nên OA là đường trung trực của BC

Suy ra: OB=OC và AB=AC

hay OC=R

Suy ra: C nằm trên (O)

Xét ΔOBA và ΔOCA có 

OA chung

OB=OC

AB=AC

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

mà \(\widehat{OBA}=90^0\)

nên \(\widehat{OCA}=90^0\)

\(\Leftrightarrow AC\perp OC\) tại C

hay AC là tiếp tuyến của (O)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
BD
Xem chi tiết
NM
Xem chi tiết
TN
Xem chi tiết
PB
Xem chi tiết
PH
Xem chi tiết
PB
Xem chi tiết