Ẩn danh

Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn. Qua A kẻ hai tiếp tuyến AB, AC với (O). Một cát tuyến đi qua A cắt (O) tại D và E. Đường thẳng vuông góc với dây DE cắt BC tại S. Chứng minh SD, SE là các tiếp tuyến của (O).

NT
25 tháng 12 lúc 12:09

Gọi giao điểm của OS và DE là K, giao điểm của AO và BC là H

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

Xét ΔOHS vuông tại H và ΔOKA vuông tại K có

\(\widehat{HOS}\) chung

Do đó: ΔOHS~ΔOKA

=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

=>\(OK\cdot OS=OH\cdot OA=R^2\)

=>\(OK\cdot OS=OE^2\)

=>\(\dfrac{OK}{OE}=\dfrac{OE}{OS}\)

Xét ΔOKE và ΔOES có

\(\dfrac{OK}{OE}=\dfrac{OE}{OS}\)

\(\widehat{KOE}\) chung

Do đó: ΔOKE~ΔOES

=>\(\widehat{OKE}=\widehat{OES}\)

=>\(\widehat{OES}=90^0\)

=>SE là tiếp tuyến của (O)

ΔODE cân tại O

mà OS là đường cao

nên OS là phân giác của góc DOE

Xét ΔOES và ΔODS có

OS chung

\(\widehat{EOS}=\widehat{DOS}\)

OE=OD

Do đó: ΔOES=ΔODS

=>\(\widehat{OES}=\widehat{ODS}\)

=>\(\widehat{ODS}=90^0\)

=>SD là tiếp tuyến của (O)

Bình luận (0)