TN

Cho đường tròn (O; R) đường kính AB, kẻ đường thẳng d ⊥ BA tại C (C nằm giữa A và B). Lấy điểm M nằm bên ngoài đường tròn và nằm trên đường thẳng d. Gọi D là giao điểm của MA và (O); E là giao điểm của MB và (O). Tiếp tuyến của (O) tại D cắt MC tại I; H là giao điểm của AE với MC.
a) Chứng minh rằng: BCHE là tứ giác nội tiếp và AH.AE = AB.AC
b) Chứng minh rằng: ∆DHI là tam giác cân
 

NT
20 tháng 6 2023 lúc 10:16

a: góc HCB+góc HEB=180 độ

=>HCBE nội tiếp

Xét ΔACH vuông tại C và ΔAEB vuông tại E có

góc CAH chung

=>ΔACH đồng dạng với ΔAEB

=>AC/AE=AH/AB

=>AC*AB=AE*AH

b: góc IDH=1/2*sđ cung DB

góc IHD=90 độ-góc AMH=1/2*sđ cung DB

=>góc IDH=góc IHD

=>ΔIHD cân tại I

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
CH
Xem chi tiết
KH
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
NJ
Xem chi tiết
PB
Xem chi tiết