ΔOCD cân tại O có OI là đường cao
nên I là trung điểm của CD
CI=căn OC^2-OI^2=căn 4^2-1^2=căn 15(cm)
=>CD=2*căn 15(cm)
ΔOCD cân tại O có OI là đường cao
nên I là trung điểm của CD
CI=căn OC^2-OI^2=căn 4^2-1^2=căn 15(cm)
=>CD=2*căn 15(cm)
Bài3 : Cho đường tròn (O) , đường kính AB=6cm . Trên đoạn OB lấy điểm M sao cho MB = 1cm . Qua M vẽ dây CD của đường tròn (O) vuông góc với AB .
a) Chứng minh: △ABC vuông . Tính CB , CD
b) Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn O ở E
c) Gọi F là giao điểm của AC và DB . Kẻ FH ⊥ AB tại H . Gọi K là giao điểm của CB và FH
d) Chứng minh : Ba điểm H, C, E thẳng hàng .
giải cụ thể chi tiết giúp mk vớiiiiiii ạ
Cho đường tròn tâm O đường kính AB = 6cm. Trên đoạn OB lấy điểm M sao cho MB = 1cm. Qua M vẽ dây CD của (O) vuông góc với AB.
a) C/m: ∆ABC vuông và tính BC?
b) Đường thẳng qua O vuông góc với AC cắt tiếp tuyến A của (O) tại E. C/m EC là tiếp tuyến của (O).
c) Gọi F là giao điểm của 2 tia AC và DB. Kẻ FH vuông góc AB tại H, K là giao điểm của 2 tia CB và FH. C/m: ∆FBK cân
d) C/m: H, C, E thẳng hàng.
Vẽ hình luôn nha các anh/chị. :'>
Vẽ hình :
Cho đường tròn ( O ; R ) đường kính AB, dây CD vuông góc với AB tại H ( AH < HB ). Qua C kẻ tiếp tuyến Cx với đường tròn, cắt tia BA tại I. Qua C vẽ tia Cy vuông góc với ID tại G. Gọi K là điểm đối xứng của O qua đoạn CD
Cho đường tròn (O; 15 cm) đường kính AB, lấy điểm I thuộc AO sao cho AI= 5cm. Vẽ dây CD vuông góc với OA tại I. Gọi E là điểm đối xứng vớ A qua I. Các tiếp tuyến với (O) tại C và D cắt nhau tại M.
a/ Tính độ dài CD?
b/ Tứ giác ECAD là hình gì?
c/ chứng minh M,A,B thẳng hàng
Bài 4(3 điểm). Cho đường tròn (O; R), đường kính AB. Lấy điểm C bất kỳ trên đường tròn (O; R) (C không trùng A; AC < BC). Qua C kẻ dây CD của đường tròn (O; R) vuông góc với đường kính AB tại I. Lấy điểm E sao cho I là trung điểm AE. Tia DE cắt đoạn thẳng BC tại F. Gọi K là trung điểm của BE. 1) Chứng minh tam giác BCD cân. 2) Chứng minh AC I/ DE và chứng minh F thuộc đường tròn tâm K đường kính BE. 3) Chứng minh IF là tiếp tuyến của đường tròn tâm K đường kính BE. 4) Lấy điểm M trên đoạn thẳng OC sao cho OM = CI. Chứng minh khi điểm C di chuyển trên nửa đường tròn (O; R) không chứa điểm D (C khác A, B) thì điểm M chạy trên một đường tròn cố định.
Cho đường tròn (O; 15 cm) đường kính AB, lấy điểm I thuộc AO sao cho AI= 5cm. Vẽ dây CD vuông góc với OA tại I. Gọi E là điểm đối xứng vớ A qua I. Các tiếp tuyến với (O) tại C và D cắt nhau tại M.
a/ Tính độ dài CD?
b/ Tứ giác ECAO là hình gì?
c/ chứng minh M,A,B thẳng hàng
Cho đường tròn (O;R) đường kính AB. Gọi M là 1 điểm thuộc AB. Vẽ dây CD qua M và vuông góc với AB. Gọi I là điểm đối xứng với C qua A. CMR: I luôn nằm trên 1 đường thẳng cố định khi M di chuyển trên đoạn AB.
cho đường tròn (O) đường kính AB. Trên AB lấy điểm I sao cho OA= 3OI. Qua I vẽ dây CD vuông góc với AB. Trên CD lấy điểm K tùy ý, tia AK cắt đường tròn (O) tại điểm thứ hai là M
a) Chứng minh tứ giác IKMB nội tiếp
b) Chứng minh rằng tâm F của dường tròn ngoại tiếp tam giác MKC nằm trên một đường thẳng cố định
c) Khi K di chuyển trên CD, tính độ dài nhỏ nhất của DF
Câu 6 (2,5 điểm). Cho đường tròn tâm O đường kính AB. Vẽ dãy CD đi qua trung điểm I của
OA và vuông góc với OA.
a) Tính độ dài dây CD biết AB = 20 cm
b) Trên tia đối của tia AO, lấy điểm M sao cho AM = AO. Chứng minh MC là tiếp tuyến của
đường tròn (O).