H24

Cho đường tròn (O) đường kính AB = 2R và dây cung CD = R (C, D nằm trên cùng nửa mặt phẳng có bờ AB, điểm C nằm trên cung AD). Gọi P là giao điểm của AC và BD, Q là giao điểm của AD và BC, Q là giao. Tính số đo góc APB và AQB.

NL
20 tháng 1 2024 lúc 15:54

Do \(OC=OD=CD=R\Rightarrow\Delta OCD\) là tam giác đều

\(\Rightarrow\widehat{COD}=60^0\)

Mà \(\widehat{CAD}=\dfrac{1}{2}\widehat{COD}\) (góc nt và góc ở tâm cùng chắn CD)

\(\Rightarrow\widehat{CAD}=30^0\)

AB là đường kính nên \(\widehat{ADB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ADB}=90^0\)

\(\Rightarrow\widehat{ADP}=90^0\Rightarrow\widehat{APB}=180^0-\left(90^0+30^0\right)=60^0\)

Tương tự ta có \(\widehat{ACB}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{ACB}=90^0\Rightarrow\widehat{BCP}=90^0\)

\(\Rightarrow\widehat{CQD}=360^0-\left(\widehat{APB}+\widehat{ADP}+\widehat{ACB}\right)=360^0-\left(60^0+90^0+90^0\right)=120^0\)

\(\Rightarrow\widehat{AQB}=\widehat{CQD}=120^0\) (2 góc đối đỉnh)

Bình luận (1)
NL
20 tháng 1 2024 lúc 15:55

loading...

Bình luận (0)

Các câu hỏi tương tự
DV
Xem chi tiết
DV
Xem chi tiết
LA
Xem chi tiết
PM
Xem chi tiết
HT
Xem chi tiết
KT
Xem chi tiết
HN
Xem chi tiết
TA
Xem chi tiết
NH
Xem chi tiết