a: ΔOAB cân tại O
mà OI là đường trung tuyến
nên OI là đường cao và OI là phân giác của \(\widehat{AOB}\)
Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OBC}=\widehat{OAC}=90^0\)
=>CB là tiếp tuyến của (O)
b: I là trung điểm của AB
=>IA=IB=AB/2=12cm
ΔOIA vuông tại I
=>\(OI^2+IA^2=OA^2\)
=>\(OI^2+12^2=13^2\)
=>\(OI^2=169-144=25\)
=>\(OI=\sqrt{25}=5\left(cm\right)\)
Xét ΔOAC vuông tại A có AI là đường cao
nên \(OI\cdot OC=OA^2\)
=>\(OC\cdot5=13^2=169\)
=>OC=33,8(cm)