H24

Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Gọi E là 1 điểm trên cung nhỏ AD ( E khác A, E khác D). Nối EC cắt OA tại F. Trên tia AB lấy điểm G sao cho AG = AC, tia CG cắt đường tròn (O) tại điểm thứ hai là H
1) CM góc CFG = góc CHE và Tứ giác EFGH nội tiếp
2) CM tiếp tuyến đường tròn (O) tại H song song với AC
3) Nối eb cắt od tại I. chứng minh af.ed/of.ea = căn 2 và OF/AF + OI/DI >= CĂN 2

NT
2 tháng 8 2023 lúc 13:31

1: góc CFG=1/2(sđ cung CB+sđ cung AE)

=1/2(sđ cung AC+sđ cung AE)

=1/2*sđ cung CE

=góc CHE

=>góc CFG=góc CHE

=>180 độ-góc EFG=góc CHE

=>góc EFG+góc EHG=180 độ

=>EFGH nội tiếp

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DK
Xem chi tiết
DT
Xem chi tiết
CD
Xem chi tiết
AT
Xem chi tiết
NT
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết