Ôn tập Đường tròn

SK

Cho đường tròn (O) có đường kính BC, dây AD vuông góc với BC tại H

Gọi E, F theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC. Gọi (I), (K) theo thứ tự là các đường tròn ngoại tiếp tam giác HBE, HCF

a) Hãy xác định vị trí tương đối của các đường tròn : (I) và (O), (K) và (O), (I) và (K)

b) Tứ giác AEHF là hình gì ? Vì sao ?

c) Chứng minh đẳng thức AE.AB = AF.AC

d) Chứng minh rằng EF là tiếp tuyến chung của hai đường tròn (I) và (K)

e) Xác định vị trí của điểm H để EF có độ dài lớn nhất

LV
23 tháng 4 2017 lúc 14:55

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Hình bên

IA = OB – IB => (I) tiếp xúc trong với (O).

OK = OC – KC => (K) tiếp xúc trong với (O)

IK = OH + KH => (I) tiếp xúc ngoài với (K)

Để học tốt Toán 9 | Giải bài tập Toán 9

Chú ý: Từ các tam giác nội tiếp đường tròn ABC, BEH, CEH ta rút ra nhận xét sau: "Nếu tam giác nội tiếp đường tròn có một cạnh là đường kính thì tam giác đó là tam giác vuông".

c) AHB vuông nên AE.AB = AH2, AHC vuông nên AF.AC = AH2

Suy ra AE.AB = AF.AC

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi G là giao điểm của AH và EF

Để học tốt Toán 9 | Giải bài tập Toán 9

Do đó EF là tiếp tuyến của đường tròn (K)

Tương tự, EF là tiếp tuyến của đường tròn (I)

e) Hình bên

Cách 1: EF = AH ≤ OA (OA có độ dài không đổi)

EF = OA <=> AH = OA <=> H trùng O <=> dây AD đi qua O.

Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.

Cách 2: EF = AH = AD/2.

Do đó: EF lớn nhất <=> AD lớn nhất <=> dây AD là đường kính.

Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.

Bình luận (0)
QD
23 tháng 4 2017 lúc 14:55

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Hình bên

IA = OB – IB => (I) tiếp xúc trong với (O).

OK = OC – KC => (K) tiếp xúc trong với (O)

IK = OH + KH => (I) tiếp xúc ngoài với (K)

Để học tốt Toán 9 | Giải bài tập Toán 9

Chú ý: Từ các tam giác nội tiếp đường tròn ABC, BEH, CEH ta rút ra nhận xét sau: "Nếu tam giác nội tiếp đường tròn có một cạnh là đường kính thì tam giác đó là tam giác vuông".

c) AHB vuông nên AE.AB = AH2, AHC vuông nên AF.AC = AH2

Suy ra AE.AB = AF.AC

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi G là giao điểm của AH và EF

Để học tốt Toán 9 | Giải bài tập Toán 9

Do đó EF là tiếp tuyến của đường tròn (K)

Tương tự, EF là tiếp tuyến của đường tròn (I)

e) Hình bên

Cách 1: EF = AH ≤ OA (OA có độ dài không đổi)

EF = OA <=> AH = OA <=> H trùng O <=> dây AD đi qua O.

Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.

Cách 2: EF = AH = AD/2.

Do đó: EF lớn nhất <=> AD lớn nhất <=> dây AD là đường kính.

Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.

Bình luận (0)
HA
23 tháng 4 2017 lúc 20:36

Lạ à nha! 2

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
HT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
EN
Xem chi tiết
HG
Xem chi tiết
H24
Xem chi tiết