H24

Cho đường tròn (O) có bán kính R = 2a và điểm A nằm ngoài đường tròn (O). Kẻ đến (O) hai tiếp tuyến AM và AN (với M, N là các tiếp điểm)
a) Chứng minh bốn điểm A,M,N,O cùng thuộc một đường tròn (C). Xác định tâm và bán kính của đường tròn (C).
b) Tính diện tích S của tứ giác AMON theo a, biết OA = 3a
c) Gọi M' là điểm đối xứng của M qua O và P là giao điểm của AO vào (O), P nằm ngoài đoạn OA. Tính sin góc MPN

NT
14 tháng 6 2023 lúc 1:33

a: góc OMA+góc ONA=180 độ

=>OMAN nội tiếp

b: AM=căn 9a^2-4a^2=a*căn 5

S AMON=2*S AMO=AM*MO=2a^2*căn 5

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
LH
Xem chi tiết
DM
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
HV
Xem chi tiết
NL
Xem chi tiết
18
Xem chi tiết
KM
Xem chi tiết