Trong mặt phẳng tọa độ Oxy, tính bán kính đường tròn tâm I(1;-2) và tiếp xúc với đường thẳng d: 3x-4y-26=0
A. R = 3
B. R = 5
C. R = 9.
D. R = 3 5
Cho đường thẳng d: 2x - y + 10 =0 và điểm M(1; -3)
a) Tính khoảng cách từ điểm M đến đường thẳng d
b) Viết pt đường thẳng đi qua M và vuông góc với đường thẳng d
c) Viết pt tiếp tuyến với đường tròn (C): (x-2)2 + (y-3)2 =9 biết rằng tiếp tuyến đó song song với đường thẳng d
d) Cho ∆ABC biết tọa độ trực tâm H(2;2). Tâm đường tròn ngoại tiếp ∆ABC là điểm I(1;2). Xác định tọa độ các điểm A, B, C biết trung điểm của BC là điểm M(1;1) và hoành độ điểm B âm
Trong hệ trục tọa độ Oxy, cho điểm I(1;1) và đường thẳng (d):3x+4x-2=0 Đường tròn tâm I và tiếp xúc với đường thẳng (d) có phương trình
A. x - 1 2 + y - 1 2 = 5 .
B. x - 1 2 + y - 1 2 = 25 .
C. x - 1 2 + y - 1 2 = 1 .
D. x - 1 2 + y - 1 2 = 1 5 .
Cho hàm số y = x x − 1 có đồ thị = C và đường thẳng d : y = − x + m . Khi đó số giá trị của m để đường thẳng d cắt đồ thị C tại hai điểm phân biệt A, B sao cho tam giác OAB (O là gốc tọa độ ) có bán kính đường tròn ngoại tiếp bằng 2 2 là:
A.0
B. 3
C. 1
D. 2
Trong mặt phẳng tọa độ Oxy, cho đường tròn (S) có tâm I nằm trên đường thẳng y = - x , bán kính bằng R = 3 và tiếp xúc với các trục tọa độ. Lập phương trình của (S), biết hoành độ tâm I là số dương.
A. x - 3 2 + y - 3 2 = 9
B. x - 3 2 + y + 3 2 = 9
C. x - 3 2 - y - 3 2 = 9
D. x + 3 2 + y + 3 2 = 9
Trong mặt phẳng tọa độ Oxy, cho đường tròn C 1 : x 2 + y 2 = 4 , C 2 : x 2 + y 2 - 12 x + 18 = 0 và đường thẳng d : x - y + 4 = 0 . Phương trình đường tròn có tâm thuộc C 2 , tiếp xúc với d và cắt C 1 tại hai điểm phân biệt A và B sao cho AB vuông góc với d là:
A. x - 3 2 + y - 3 2 = 4
B. x - 3 2 + y - 3 2 = 8
C. x + 3 2 + y + 3 2 = 8
D. x + 3 2 + y + 3 2 = 4
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng ( α ) :x-my+z+2m-1=0; ( β ) :mx+y-mz+m+2=0. Gọi Δ là hình chiếu vuông góc của d lên mặt phẳng (Oxy). Biết rằng với mọi số thực m thay đổi thì Δ luôn tiếp xúc với một đường tròn cố định. Tính bán R của đường tròn đó.
A. 2.
B. 1.
C. 4.
D. 3.
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng ( α ) : x - m y + z + 2 m - 1 = 0 , ( β ) : m x + y - m z + m + 2 = 0 .Gọi Δ là hình chiếu vuông góc của d lên mặt phẳng (Oxy). Biết rằng với mọi số thực m thay đổi thì Δ luôn tiếp xúc với một đường tròn cố định. Tính bán R của đường tròn đó.
A. 2.
B. 1.
C. 4.
D. 3.
Trong mặt phẳng tọa độ Oxy, cho đường tròn ( C ) : x - 4 2 + y - 3 2 = 5 và đường thẳng d: x+2y-5=0. Tọa độ tiếp điểm M của đường thẳng d và đường tròn (C) là
A. M(3;1)
B. M(6;4)
C. M(5;0)
D. M(1;2)