Ôn tập chương III

NK

Cho đường tròn (C): \(x^2+y^2+2x-2y-2=0\) và đường thẳng d: \(x-my+2m+3=0\). Tìm m để d cắt (C) tại hai điểm phân biệt B và C sao cho BC=\(2\sqrt{3}\)

AH
28 tháng 3 2018 lúc 15:38

Lời giải:

Đường tròn (C):

\(x^2+y^2+2x-2y-2=0\)

\(\Leftrightarrow (x+1)^2+(y-1)^2=4=2^2\)

Do đó đường tròn (C) là đường tròn có tâm \(I(-1;1)\) bán kính \(R=2\)

Từ $I$ kẻ \(IH\perp BC\) thì $H$ là trung điểm của $BC$

\(\Rightarrow BH=\sqrt{3}\)

Áp dụng định lý Pitago:

\(IH=\sqrt{BI^2-BH^2}=\sqrt{R^2-3}=\sqrt{4-3}=1(1)\)

Mà: \(IH=d(I, d)=\frac{|-1-m+2m+3|}{\sqrt{m^2+1}}=\frac{|m+2|}{\sqrt{m^2+1}}(2)\)

Từ \((1); (2)\Rightarrow \frac{|m+2|}{\sqrt{m^2+1}}=1\)

\(\Rightarrow (m+2)^2=m^2+1\Leftrightarrow m^2+4m+4=m^2+1\)

\(\Leftrightarrow 4m+3=0\Leftrightarrow m=\frac{-3}{4}\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
PN
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NV
Xem chi tiết
BK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết