Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A, B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC.
a) Chứng minh AMPC và BMPD là các tứ giác nội tiếp
Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A, B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC.
c) Đường thẳng nối tâm của hai đường tròn ngoại tiếp hai tứ giác AMPC và BMPD cắt PA, PB tương ứng tại E, F. Chứng minh CDFE là hình thang.
Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A, B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC.
b) Chứng minh C P . C B + D P . D A = A B
c) Đường thẳng nối tâm của hai đường tròn ngoại tiếp hai tứ giác AMPC và BMPD cắt PA, PB tương ứng tại E, F. Chứng minh CDFE là hình thang.
Cho tam giác ABC ( AB<AC) nội tiếp đường tròn (O) , bán kính R , đường cao AD,BE,CF của tam giác ABC cắt nhau tại H.
Chứng minh:
1) tứ giác BFHD,BFEC nội tiếp đường tròn
2) FH là tia phân giác của góc DFE và H là tâm đường tròn nội tiếp tam giác DEF
3) Gọi M là trung điểm BC . Chứng minh OM//AD và tứ giác DMEF nội tiếp
4) Gọi N là giao điểm AD và BF , chứng minh 1/HN - 1/HD = 2/AH
5) Gọi K là giao điểm AD và đường tròn (O) , khác A . Chứng minh HK đối xứng qua BC
cho đường tròn (o) đường kính AB và đường thẳng d là tiếp tuyến của đường tròn kẻ từ B. trên d lấy hai điểm nằm khác phía với điểm B và BC<BD.AC cắt (o) tại E, AD cắt (o) tại F.(E,F khác A) đường thẳng kẻ qua A vuông góc với EF cắt CD tại M.
a) chứng minh tứ giác CEFD nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác CEFD. chứng minh IM vuông góc với CD.
c) gọi P là giao điểm của FE và CD. PA cắt đường tròn (o) tại K (K khác A) c/m K,B,I thẳng hàng
cho tam giác nhọn ABC ( AB< AC) nội tiếp đường tròn (O) và có trực tâm H. Ba điểm D,E,F lần lượt là chân các đường cao vẽ từ A,B,C của tam giác ABC. Gọi M là trung điểm của cạnh BC, K là giao điểm của EF và BC. Đường thẳng AK cắt đường tròn tại N
a> Chứng minh tứ giác BFNK nội tiếp đường tròn và HK vuông góc với AM
b> Lấy điểm L trên cung nhỏ BC của đường tròn (O) ( L khác B,L khác C). Goik P là giao điểm của AL và BE, Q là giao điểm của BL và AD. Chứng Minh đường thẳng DE cách đều điểm P và Q
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Các đường cao AD, BE và CF của tam giác ABC đồng quy tại H. Gọi M là trung điểm của đoạn thẳng BC, K là giao điểm của hai đường thẳng BC và EF. 1. Chứng minh rằng KB.KC = KE.KF và H là tâm đường tròn nội tiếp của tam giác DEF. 2. Qua điểm F kẻ đường thẳng song song với đường thẳng AC, đường thẳng này cắt các đường thẳng AK, AD lần lượt tại P và Q. Chứng minh FP = FQ. 3. Chứng minh rằng đường thẳng HK vuông góc với đường thẳng AM.
Cho tam giác ABC nội tiếp đường tròn tâm o (AB<AC) diemrd M l;à trung điểm của cạnh BC . đường phân giác trong góc BAC cắt BC ở D vá cắt đường tròn O ở P ( P khác A ) GỌI E đối xững với D qua M .qua D kẻ đường thẳng vuông góc với BC cắt AO ở H qua E kẻ đường vuông góc với BC cắt AD ở F .gọi K là giao cảu PE và DH
1)CHỨNG MINH TỨ GIÁC DEFK LÀ HÌNH CHỮ NHẬT
2)CHỨNG MINH DB.DC=DA.DP=DH.DK TỪ ĐÓ SUY RA BHCK NỘT TIẾP ĐƯỜNG TRÒN TAM I
3)GỌI T LÀ GIAO AD VÀ (I)9T KHÁC F) CHỨNG MINH HT VUÔNG GÓC VỚI AD
4)ĐƯỜNG TRÒN NGOẠI TIẾP TAM GIÁC MTP CẮT TH Ở Q ( KHÁC T) CHỮNG MINH QA TIẾP XÚC VỚI (O)
Cho đường tròn (O) tâm O đường kính AB. Lấy hai điểm phân biệt C và D thuộc đường tròn (O); biết C và D nằm khác phía đốt với đường thẳng AB. Gọi E,F tương ứng là trung điểm của hai dây AC, AD.
1) Chứng minh AC^2 + CB^2 = AD^2 + DB^2.
2) chứng minh tứ giác AEOF nội tiếp đường tròn. Xác định tâm đường tròn ngoại tiếp tứ giác AEOF.
3) Đường thẳng EF cắt đường tròn ngoại tiếp ADE tại điểm K khác E.
Chứng minh đường thẳng DK là tiếp tuyến của đường tròn (O). Tìm điều kiện của tam giác ACD để tứ giácAEDK là hình chữ nhật