Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;1;0) và đường thẳng d có phương trình d : x - 1 2 = y + 1 1 = z - 1 Phương trình của đường thẳng ∆ đi qua điểm, M cắt và vuông góc với đường thẳng d là:
A. x - 2 1 = y - 1 - 4 = z - 2
B. x - 2 - 1 = y - 1 - 4 = z 2
C. x - 2 - 1 = y - 1 - 3 = z 2
D. x - 2 - 3 = - y - 1 - 4 = z - 2
Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;1;0) và đường thẳng ∆ : x - 1 2 = y + 1 1 = z - 1 . Phương trình tham số của đường thẳng d đi qua điểm M, cắt và vuông góc với ∆ là
Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;1;0) và đường thẳng ∆ : x - 1 2 = y + 1 1 = z - 1 .Phương trình tham số của đường thẳng d đi qua M, cắt và vuông góc với Δ là:
Trong không gian Oxyz cho đường thẳng d : x 2 = y 2 = z + 3 - 1 và mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi △ là đường thẳng đi qua A(2;1;3), vuông góc với đường thẳng d và cắt (S) tại hai điểm có khoảng cách lớn nhất. Khi đó đường thằng △ có một véctơ chỉ phương là u → = ( 1 ; a ; b ) . Tính
A. 4
B. -2
C. - 1 2
D. 5
Trong không gian với hệ tọa độ Oxyz, cho điểm M (2 ; 1 ; 0) và đường thẳng ∆ : x - 1 2 = y + 1 1 = z - 1 . Phương trình tham số của đường thẳng d đi qua M, cắt và vuông góc với Δ là:
A . d : x = 2 + t y = 1 - 4 t z = - 2 t
B . d : x = 2 - t y = 1 + t z = t
C . d : x = 1 + t y = - 1 - 4 t z = 2 t
D . d : x = 2 + 2 t y = 1 + t z = - t
Cho mặt phẳng ( α ) : 2x + y + z – 1 = 0 và đường thẳng d: x - 1 2 = y 1 = z + 1 - 3
Gọi M là giao điểm của d và ( α ), hãy viết phương trình của đường thẳng ∆ đi qua M vuông góc với d và nằm trong ( α )
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 3 2 = y + 2 1 = z + 1 - 1 , mặt phẳng (P):x+y+z+2=0. Gọi M là giao điểm của d và (P). Gọi ∆ là đường thẳng nằm trong (P) vuông góc với d và cách M một khoảng bằng 42 . Phương trình đường thẳng là.
Trong không gian Oxyz, cho đường thẳng d : x - 2 1 = y - 1 - 2 = z - 1 2 và hai điểm A(3;2;1), B(2;0;4). Gọi là ∆ đường thẳng qua A, vuông góc với d sao cho khoảng cách từ B đến ∆ là nhỏ nhất. Gọi u → =(2;b;c) là một VTCP của ∆ . Khi đó, u → bằng
A. 17
B. 5
C. 6
D. 3
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A(a;0;0), B(0;0;b). Gọi (P) là mặt phẳng chứa d và d'; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng D thay đổi trên (P) nhưng luôn đi qua H đồng thời D cắt d và d' lần lượt tại B, B'. Hai đường thẳng cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có véc tơ chỉ phương u → = ( 15 ; - 10 ; - 1 ) (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = -9
D. 6