BM

Cho điểm A ở ngoài đường tròn (O ;R). Kẻ hai tiếp tuyến AT, AT' và cát tuyến ABC với (O ;R). gọi H là trung điểm của BC ; TT' cắt OA và BC lần lượt tại I và J. a) Chứng minh : AT² = AI. AO b) Chứng minh các tam giác AIJ và AHO đồng dạng. Từ đó suy ra tích AJ. AH có giá trị không đổi khi cát tuyến ABC quay quanh A. c) Xác định vị trí điểm A để góc TAT'= 60°.

NT
5 tháng 1 2022 lúc 20:59

a: Xét (O) có 

AT là tiếp tuyến

AT' là tiếp tuyến

Do đó: AT=AT'

hay A nằm trên đường trung trực của TT'(1)

Ta có: OT=OT'

nên O nằm trên đường trung trực của TT'(2)

Từ (1) và (2) suy ra AO là đường trung trực của TT'

Xét ΔOTA vuông tại T có TI là đường cao

nên \(AT^2=AI\cdot AO\)

b: Xét ΔAIJ vuông tại I và ΔAHO vuông tại H có 

\(\widehat{HAO}\) chung

Do đó: ΔAIJ\(\sim\)ΔAHO

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
LA
Xem chi tiết
NL
Xem chi tiết
LH
Xem chi tiết
LA
Xem chi tiết
MT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TN
Xem chi tiết