TT

 Cho điểm A ( 2;1) . Xác định tọa độ các điểm :

a) B đối xứng với A qua trục tung     b) C đối xứng với A qua trục hoành

c) D dối xứng với A qua O                d) E đối xứng với A qua đường thẳng  d: y = 2x - 1

NT
15 tháng 11 2023 lúc 13:59

a: B đối xứng A qua trục tung Oy

=>\(\left\{{}\begin{matrix}x_B=-x_A=-2\\y_B=y_A=1\end{matrix}\right.\)

Vậy: B(-2;1)

b: C đối xứng A qua trục Ox

=>\(\left\{{}\begin{matrix}x_C=x_A=2\\y_C=-y_A=-1\end{matrix}\right.\)

Vậy: C(2;-1)

c: D đối xứng A qua O

=>O là trung điểm của AD

=>\(\left\{{}\begin{matrix}x_A+x_D=0\\y_A+y_D=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=-x_A=-2\\y_D=-y_A=-1\end{matrix}\right.\)

Vậy: D(-2;-1)

d: (d): y=2x-1

=>(d): 2x-y-1=0

E đối xứng A qua (d)

=>(d) là đường trung trực của AD

Gọi (d2): ax+by+c=0 là phương trình đường thẳng AD

(d) là trung trực của AD

=>(d) vuông góc (d2) tại trung điểm của AD(1) và (d2) đi qua A(2;1)

(d): 2x-y-1=0

=>(d2): x+2y+c=0

Thay x=2 và y=1 vào (d2), ta được:

\(c+2+2\cdot1=0\)

=>c=-4

=>(d2): x+2y-4=0

Tọa độ giao điểm F của (d) với (d2) là:

\(\left\{{}\begin{matrix}x+2y-4=0\\2x-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\2x-y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+4y=8\\2x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=7\\x+2y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{7}{5}\\x=4-2y=4-\dfrac{14}{5}=\dfrac{6}{5}\end{matrix}\right.\)

(1) suy ra F là trung điểm của AE

=>\(\left\{{}\begin{matrix}\dfrac{6}{5}=\dfrac{x_A+x_E}{2}=\dfrac{2+x_E}{2}\\\dfrac{7}{5}=\dfrac{y_A+y_E}{2}=\dfrac{y_E+1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_E+2=\dfrac{12}{5}\\y_E+1=\dfrac{14}{5}\end{matrix}\right.\Leftrightarrow E\left(\dfrac{2}{5};\dfrac{9}{5}\right)\)

Bình luận (0)

Các câu hỏi tương tự
LS
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
LA
Xem chi tiết
LL
Xem chi tiết
FT
Xem chi tiết
UN
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết