LT

Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

 

RH
7 tháng 11 2021 lúc 12:28

Theo tính chất dãy tỉ số bằng nhau, ta có:

a/b = b/c = c/d = (a + b + c)/(b + c + d)

--> ((a + b + c)/(b + c + d))^3 = a^3/b^3

Cần chứng minh:

a^3/b^3 = a/d

<=> a^3/b^3 = a^3/(a^2.d)

--> b^3 = a^2.d

Mà ad = bc (do a/b = c/d)

--> b^3 = abc

<=> b^2 = ac (luôn đúng do a/b = b/c)

--> đpcm

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LT
Xem chi tiết
LN
Xem chi tiết
NV
Xem chi tiết
HN
Xem chi tiết
Xem chi tiết
LT
Xem chi tiết
VP
Xem chi tiết
LT
Xem chi tiết