TV

 Cho \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{20^2}\)

               Chứng minh rằng : A < 1

TN
16 tháng 3 2023 lúc 8:53

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{20^2}\) . CMR : A<1

                     Giải:

Có \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\\ \dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\\ ....\\ \dfrac{1}{20^2}< \dfrac{1}{19\cdot20}\)

Nên `A=1/2^2+1/3^2+1/4^2+...+1/(20^2)<1/1.2+1/2.3+1/3.4+...+1/19.20`

`=1-1/2+1/2-1/3+1/3-1/4+...+1/19-1/20=1-1/20=19/20`

Mà `19/20<1`

nên `A<1(đpcm)`

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
KJ
Xem chi tiết
NT
Xem chi tiết
LC
Xem chi tiết
CY
Xem chi tiết
BD
Xem chi tiết
BD
Xem chi tiết
HV
Xem chi tiết
DC
Xem chi tiết