Bài 3. TÍCH CỦA VECTO VỚI MỘT SỐ

PM

Cho \(\Delta ABC\) có E, I lần lượt là trung điểm của BC và AB. Gọi D, J, K là các điểm thõa mãn \(\overrightarrow{BE}=2\overrightarrow{BD}\), \(\overrightarrow{AJ}=\frac{1}{2}\overrightarrow{JC}\), \(\overrightarrow{IK}=m\overrightarrow{IJ}\).

Tìm m để A, K, D thẳng hàng.

NL
14 tháng 10 2020 lúc 0:04

\(\overrightarrow{IJ}=\overrightarrow{AI}+\overrightarrow{AJ}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\)

\(\overrightarrow{IJ}=-\frac{1}{6}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}\Rightarrow\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AB}+3\overrightarrow{IJ}\)

\(\overrightarrow{AK}=\overrightarrow{AI}+\overrightarrow{IK}=\frac{1}{2}\overrightarrow{AB}+m.\overrightarrow{IJ}\)

\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}=\overrightarrow{AB}+\frac{1}{2}\left(\frac{1}{2}\overrightarrow{B}+3\overrightarrow{IJ}\right)\)

\(\overrightarrow{AD}=\frac{5}{4}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{IJ}=\frac{5}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{3}{5}\overrightarrow{IJ}\right)\)

Vậy để A;K;D thẳng hàng \(\Leftrightarrow m=\frac{3}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PM
Xem chi tiết
BD
Xem chi tiết
PH
Xem chi tiết
CC
Xem chi tiết
TM
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết