Dãy số được xác định bằng công thức \(U_n=sin\left(4n-1\right)\dfrac{\pi}{6}\)
a) C/M ; \(U_n=U_{n+3}\)
b) tính tổng 15 số hạng đầu
Cho dãy số thực \(\left(u_n\right)\)xác định bởi: \(\left\{{}\begin{matrix}u_1=\sin1\\u_n=u_{n-1}+\dfrac{\sin n}{n^2},\forall n\in N,n\ge2\end{matrix}\right.\)
Chứng minh rằng dãy số xác định như trên là một dãy số bị chăn
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{u_n+1}{2}\end{matrix}\right.\) với \(n\ge1\)
a, Viết 4 số hạng đầu của dãy số
b, Chứng minh rằng \(u_n>1\) với \(n\ge1\)
c, Tìm CTTQ của dãy
cho dãy số (sn) với sn=sin(4n−1)\(\frac{\pi}{6}\) .
chứng minh rằng sn=sn+3 với mọi n≥1
Cho dãy số \(\left(u_n\right)\) xác định bởi: \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_{n+1}=\dfrac{u_n^2}{u_{n-1}}\end{matrix}\right.\) với \(n\ge2\)
a, Chứng minh dãy số \(\left(v_n\right):v_n=\dfrac{u_n}{u_{n-1}}\) là dãy số không đổi
b,Tìm công thức tổng quát của dãy số \(\left(u_n\right)\)
Cho dãy số \(\left(u_n\right)\) với \(u_n=n^2-4n+3\)
a) Viết công thức truy hồi của dãy số
b) Chứng minh dãy số bị chặn dưới
c) Tính tổng n \(n\) số hạng đầu của dãy đã cho
Cho dãy số \(\left(u_n\right)\) thỏa mãn điều kiện : Với mọi \(n\in N^{\circledast}\) thì
\(0< u_n< 1\) và \(u_{n+1}< 1-\dfrac{1}{4u_n}\)
Chứng minh dãy số đã cho là dãy giảm
Trong các dãy số sau, dãy số nào bị chặn?
A. Dãy \(\left(a_n\right)\), với \(a_n=\sqrt{n^3+n},\forall n\in N^*\).
B. Dãy \(\left(b_n\right)\), với \(b_n=n^2+\dfrac{1}{2n},\forall n\in N^*\).
C. Dãy \(\left(c_n\right)\), với \(c_n=\left(-2\right)^n+3,\forall n\in N^*\).
D. Dãy \(\left(d_n\right)\), với \(d_n=\dfrac{3n}{n^3+2},\forall n\in N^*\).
Nếu được thì giải thích chi tiết từng đáp án giúp mình với ạ, mình cảm ơn!