a: Sửa đề: BI vuông góc AD
Xét ΔABE có
AI vừa là đường cao, vừa là phân giác
=>ΔABE cân tại A
=>Ab=AE
b: AB=AE
AB<AD
=>AE<AD
c: AB=căn 15^2-12^2=9cm
d: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>góc AED=90 độ
=>DE vuông góc AC
a: Sửa đề: BI vuông góc AD
Xét ΔABE có
AI vừa là đường cao, vừa là phân giác
=>ΔABE cân tại A
=>Ab=AE
b: AB=AE
AB<AD
=>AE<AD
c: AB=căn 15^2-12^2=9cm
d: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>góc AED=90 độ
=>DE vuông góc AC
Cho tam giác ABC vuông tại A (AB<AC) , kẻ AH vuông góc với BC, phân giác của góc HAC cắt BC tại D
a/ Chứng minh tam giác ABD cân tại B
b/ Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. Chứng minh DE vuông góc AC
c/ Cho AB=15cm, AH=12cm. Tính AD
Cho tam giác ABC vuông tại A có AB<AC, Kẻ AH vuông góc với BC, phân giác của góc HAC cắt BC tại D.
a, Chứng minh tam giác ABD cân tại B
b, Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. Chứng minh DE vuông góc với AC
c, Cho AB=15cm; AH=12cm. Tính AD
d, Chứng minh AH>HE
Cho tam giác ABC vuộng tại A(AB<AC),kẻ AH vuông góc với BC, phân giác của góc HAC cắt BC tại tại D
a)C/m: tam giác ABD cân tại D
b)Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. C/m: DE vông góc AC
c)Cho AB=15cm, AH=12cm. Tính AD
d)C/m: AD>HE
Cho tam giác ABC vuộng tại A(AB<AC),kẻ AH vuông góc với BC, phân giác của góc HAC cắt BC tại tại D
a)C/m: tam giác ABD cân tại D
b)Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. C/m: DE vông góc AC
c)Cho AB=15cm, AH=12cm. Tính AD
d)C/m: AD>HE
Cho tam giác ABC vuông tại A (AB<AC) , kẻ AH vuông góc với BC, phân giác của góc HAC cắt BC tại D
a/ Chứng minh tam giác ABD cân tại B
b/ Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. Chứng minh DE vuông góc AC
c/ Cho AB=15cm, AH=12cm. Tính AD
d/ Chứng minh AD>HE
(Không cần vẽ hình.)
Cho tam giác ABC vuông tại A ( AB<AC) kẻ AH vuông góc với BC , phân giác góc HAC cắt BC tại D
a) Cm : tam giác ABD cân tại B
b) Từ H kẻ đường thẳng vuông góc với AD cắt Ac tại E . CM: DE vuông góc AC
c) Cho AB=15cm, AH=12cm. Tính AD
Cho tam giác ABC vuông tại A (AB < AC) , AH vuông góc với BC, phân giác của góc HAC cắt BC tại D
a/ Chứng minh tam giác ABD cân tại B
b/ Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. Chứng minh DE vuông góc AC
c/ Cho AB=15cm, AH=12cm. Tính BH
d/ Chứng minh AD > HE
Cho tam giác ABC vuông tại A. Biết AC = 12cm, BC = 15cm
a) Tính độ dài cạnh AB
b)Tia phân giác của góc B cắt AC tại M. Vẽ MN vuông góc với BC ( N thuộc BC ). Chứng minh AM=MN
c) Một đường thẳng qua C và vuông góc với đường thẳng BM tại E, cắt đường thẳng AB tại D. Chứng minh AD = NC
Cho tam giac ABC vuông tại C có góc B=40 độ. Tia phân giác AD. Lấy E thuộc AB sao cho AE=AC.
a) So sánh các cạnh của tam giác ABC.
b) Chứng tỏ tam giác AED vuông.
c) Đường vuông góc với AC tại A cắt đường thẳng DE tại H. Chứng minh tam giác ADH cân.
d) Kẻ CK vuông góc AB tại K. Lấy I thuộc AB sao cho BI=BC. Chứng minh: CI là phân giác ACK.
cho tam giác ABC vuông tại A có AB < AC . Gọi M là trung điểm của BC . Qua M kẻ đường thẳng vuông góc với BC cắt AC tại I . a) Chứng minh : tam giác IMB = tam giác IMC . b) Từ C kẻ đường thẳng vuông góc với BI cắt BI tại D . Chứng minh AB = DC và AC = DB . c) Biết góc BIC = 120 độ . Tính góc ABC