FC

cho ΔABC vuông tại A,đường cao AH biết AH =3cm, BH=4cm

a,tính AB,AC và góc B,C

b,từ H kẻ HE vuông AB ,HF vuông AC.hỏi tứ giác AEHF là hình gì tính EF

c,chứng minh AB x AE=AC x AF

VẼ HÌNH GIÚP MÌNH VS Ạ

NT
1 tháng 11 2023 lúc 20:00

loading...

a: ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>HC*4=3^2=9

=>HC=2,25(cm)

BC=BH+CH

=2,25+4

=6,25(cm)

XétΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB^2=2,25\cdot6,25\\AC^2=4\cdot6,25\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2,25\cdot6,25}=3,75\left(cm\right)\\AC=\sqrt{25}=5\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

=>\(\widehat{B}=90^0-37^0=53^0\)

b: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>HA=EF=3(cm)

c: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
HT
Xem chi tiết
PD
Xem chi tiết
NT
Xem chi tiết
AD
Xem chi tiết