TN

Cho ΔABC vuông tại A có đường cao AH.AB=2;AC=3CH.Diện tích ΔABC bằng

A.\(\dfrac{\sqrt{2}}{2}\)      B.\(2\sqrt{2}\)       C.\(\dfrac{3\sqrt{3}}{2}\)       D.\(3\sqrt{3}\)

PC
14 tháng 2 2023 lúc 21:36

A.\(\dfrac{\sqrt{2}}{2}\)

Bình luận (0)
LK
14 tháng 2 2023 lúc 21:45

\(\Delta AHC\perp\) tại H ; \(AH^2=AC^2-CH^2=AC^2-\dfrac{1}{9}AC^2=\dfrac{8}{9}AC^2\)

\(\Delta ABC\perp\) tại A ; \(AH\perp BC\) tại H . Khi đó : 

\(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}=\dfrac{9}{8AC^2}-\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{8AC^2}=\dfrac{1}{4}\Rightarrow AC^2=\dfrac{1}{2}\)

\(\Rightarrow AC=\dfrac{1}{\sqrt{2}}\) 

\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.2.\dfrac{1}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\)

Chọn A 

 

Bình luận (1)

Các câu hỏi tương tự
TN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết