H24

cho ΔABC vuông tại A có AB/AC=3/4, BC=100cm. Kẻ đường cao AH. Tính HA, HB, HC

AT
18 tháng 7 2021 lúc 16:28

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)

tam giác ABC vuông tại A nên áp dụng Py-ta-go

\(\Rightarrow BC^2=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)

\(\Rightarrow10000=\dfrac{25}{16}AC^2\Rightarrow AC^2=6400\Rightarrow AC=80\left(cm\right)\)

\(\Rightarrow AB=\dfrac{3}{4}.80=60\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60.80}{100}=48\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{60^2}{100}=36\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{80^2}{100}=64\left(cm\right)\)

Bình luận (0)
NT
18 tháng 7 2021 lúc 23:06

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

nên \(AB=\dfrac{3}{4}AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(\dfrac{3}{4}AC\right)^2+AC^2=100^2\)

\(\Leftrightarrow\dfrac{25}{16}AC^2=10000\)

\(\Leftrightarrow AC^2=6400\)

hay AC=80(cm)

\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot80=60\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot100=60\cdot80=4800\)

hay AH=48(cm)

Áp dụng định lí Pytago vào ΔABH vuông tại H,ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=60^2-48^2=1296\)

hay BH=36(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=100-36=64(cm)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
HC
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết