a) △MDC và △MAE có: \(\widehat{MDC}=\widehat{MAE}=90^0;\widehat{DMC}=\widehat{AME}\) (đối đỉnh).
\(\Rightarrow\)△MDC∼△MAE (g-g) \(\Rightarrow\dfrac{MD}{MA}=\dfrac{MC}{ME}=\dfrac{DC}{AE}\).
b) △MDC∼△MAE (g-g) \(\Rightarrow\widehat{DCM}=\widehat{AEM}\).
c) △ABC và △DMC có: \(\widehat{BAC}=\widehat{MDC}=90^0;\widehat{C}\) chung.
\(\Rightarrow\)△ABC∼△DMC (g-g) \(\Rightarrow\dfrac{S_{DMC}}{S_{ABC}}=\left(\dfrac{MC}{BC}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{S_{ABC}-S_{ABDM}}{S_{ABC}}=\dfrac{1}{4}\Rightarrow1-\dfrac{S_{ABDM}}{S_{ABC}}=\dfrac{1}{4}\Rightarrow\dfrac{S_{ABDM}}{S_{ABC}}=\dfrac{3}{4}\)