NN

Cho ΔABC vuông tại A (AB<AC), đường cao AH.
a)Chứng minh ΔABC đồng dạng ΔHBA từ đó suy ra AB2=BC.BH; AB.AC=BC.AH.
b)Chứng minh ΔABC đồng dạng ΔHAC từ đó suy ra AC2=BC.CH.
c)Tia phân giác của góc ABC cắt AH tại K, cắt AC tại I. Chứng minh: ΔABK đồng dạng ΔCBI.
d)Chứng minh\(\dfrac{AI}{IC}=\dfrac{KH}{AK}\)
e)Tính tỉ số diện tích của  ΔBHK và  ΔBAI khi AB=3cm, AC=4cm.
f)Tính diện tích  ΔBIC

NT
6 tháng 4 2023 lúc 14:38

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

=>AC/HA=AB/HB=BC/AB

=>AB^2=BH*BC; AC*AB=AH*BC

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạngvới ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

d: AI/IC=AB/BC

KH/AH=BH/BA

mà AB/BC=BH/BA

nên AI/IC=KH/AH

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
TP
Xem chi tiết
KK
Xem chi tiết
NA
Xem chi tiết
NV
Xem chi tiết
GM
Xem chi tiết
PP
Xem chi tiết
PV
Xem chi tiết
NT
Xem chi tiết