H24

: Cho ΔABC vuông tại A, AB < AC. Lấy điểm D sao cho A là trung điểm của BD. 1) Chứng minh CA là tia phân giác 𝐵𝐶𝐷 ̂ 2) Vẽ BE vuông góc với CD tại E, BE cắt CA tại I. Vẽ IF vuông góc với BC tại F. Chứng minh ΔCEF cân và EF//DB. 3) So sánh IE và IB. 4) Chứng minh D, I, F thẳng hàng.

NT
28 tháng 2 2022 lúc 22:58

1: Xét ΔCDB có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCDB cân tại C

mà CA là đường trung tuyến

nên CA là tia phân giác của góc BCD

2: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có

CI chung

\(\widehat{ECI}=\widehat{FCI}\)

Do đó:ΔCEI=ΔCFI

Suy ra: CE=CF

hay ΔCEF cân tại C

Xét ΔCDB có

CE/CD=CF/CB

nên EF//DB

3: Ta có: ΔCEI=ΔCFI

nên IE=IF

mà IF<IB

nên IE<IB

4: Xét ΔCDB có

CA là đường cao

BE là đường cao

CA cắt BE tại I

Do đó: I là trực tâm của ΔCDB

=>DI⊥CB

mà IF⊥CB

nên DI,FI có điểm chung là I

nên D,I,F thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
H24
Xem chi tiết
SD
Xem chi tiết
TL
Xem chi tiết
CH
Xem chi tiết
NN
Xem chi tiết
NM
Xem chi tiết
PN
Xem chi tiết
PB
Xem chi tiết