TT

Cho ΔABC nội tiếp đường tròn (O). Tia phân giác của góc BAC cắt (O) tại D. Tiếp tuyến tại D cắt (O) cắt 2 đường thẳng AB, AC lần lượt tại E và F. Chứng minh: AB.AF = AC. AE = AD2

NL
25 tháng 1 2024 lúc 23:28

Ta có: \(\widehat{CDF}=\widehat{CAD}\) (cùng chắn AD)

\(\widehat{CAD}=\widehat{BAD}\) (AD là phân giác)

\(\widehat{BAD}=\widehat{BCD}\) (cùng chắn BD)

\(\Rightarrow\widehat{CDF}=\widehat{BCD}\)

\(\Rightarrow BC||EF\) (hai góc so le trong bằng nhau)

\(\Rightarrow\dfrac{AB}{AE}=\dfrac{AC}{AF}\Rightarrow AB.AF=AC.AE\)

Cũng từ BC song song EF \(\Rightarrow\widehat{ACB}=\widehat{AFD}\) (đồng vị)

Mà \(\widehat{ACB}=\widehat{ADB}\) (cùng chắn AB)

\(\Rightarrow\widehat{AFD}=\widehat{ADB}\)

Xét 2 tam giác AFD và ADB có:

\(\left\{{}\begin{matrix}\widehat{FAD}=\widehat{DAB}\left(\text{AD là phân giác}\right)\\\widehat{AFD}=\widehat{ADB}\left(cmt\right)\end{matrix}\right.\)  \(\Rightarrow\Delta AFD\sim\Delta ADB\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AF}{AD}\Rightarrow AB.AF=AD^2\)

\(\Rightarrow AB.AF=AC.AE=AD^2\)

Bình luận (0)
NL
25 tháng 1 2024 lúc 23:29

loading...

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
BK
Xem chi tiết
PB
Xem chi tiết
PN
Xem chi tiết
MT
Xem chi tiết
DH
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết