HC

Cho ΔABC , góc A =90 độ , AH⊥BC tại H , biết AH =2cm , HB=1cm . Tính HC , AC

 

NT
3 tháng 8 2021 lúc 21:56

Áp dụng hệ thức liên quan tới đường cao vào \(\Delta ABC\), ta có:

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)

Mặt khác, áp dụng định lý Pytago vào \(\Delta BHA\), ta có:

\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{2^2+1}=\sqrt{5}\left(cm\right)\)

Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta ABC\), ta có:

\(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{2.\left(1+4\right)}{\sqrt{5}}=2\sqrt{5}\left(cm\right)\)

 

Bình luận (0)
NT
3 tháng 8 2021 lúc 22:29

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

nên \(HC=\dfrac{2^2}{1}=4\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AC^2=HC\cdot BC\)

nên \(AC^2=20\)

hay \(AC=2\sqrt{5}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
UT
Xem chi tiết
TC
Xem chi tiết
XB
Xem chi tiết
NT
Xem chi tiết
LM
Xem chi tiết
LP
Xem chi tiết
NK
Xem chi tiết
HL
Xem chi tiết
DM
Xem chi tiết