NP

Cho đa thức E(x)= -4x^4 + x + 1. Tìm giá trị của E(x) khi |2x - 1| = 1/2

H9
26 tháng 4 2023 lúc 13:32

Ta có \(\left|2x-1\right|=\dfrac{1}{2}\)

\(\left|2x-1\right|=2x-1\) khi \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)

\(\left|2x-1\right|=-\left(2x-1\right)\) khi \(2x-1< 0\Leftrightarrow2x< 1\Leftrightarrow x< \dfrac{1}{2}\)

Ta giải hai phương trình sau:

pt1\(2x-1=\dfrac{1}{2}\left(ĐK:x\ge\dfrac{1}{2}\right)\)

\(\Leftrightarrow2x=\dfrac{1}{2}-1\)

\(\Leftrightarrow2x=-\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{-\dfrac{1}{2}}{2}=-\dfrac{1}{2}\left(ktm\right)\)

pt2\(-\left(2x-1\right)=\dfrac{1}{2}\left(ĐK:x< \dfrac{1}{2}\right)\)

\(\Leftrightarrow-2x+1=\dfrac{1}{2}\)

\(\Leftrightarrow-2x=\dfrac{1}{2}-1\)

\(\Leftrightarrow-2x=-\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{-\dfrac{1}{2}}{-2}=\dfrac{1}{4}\left(tm\right)\)

Vậy giá trị của đa thức \(E\left(x\right)\) tại \(x=\dfrac{1}{4}\)

\(E\left(x\right)=-4x^4+x+1=-4.\left(\dfrac{1}{4}\right)^4+\dfrac{1}{4}+1=\dfrac{79}{64}\)

Bình luận (0)

Các câu hỏi tương tự
VP
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết
KT
Xem chi tiết
NH
Xem chi tiết
LA
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
CH
Xem chi tiết