A(x) chia hết cho (x-2) và (x-3) => A(2)=0 và A(3)=0
\(\left\{{}\begin{matrix}2^4+8m-220+2n-156=0\\3^4+27m-495+3n-156=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8m+2n=360\\27m+3n=570\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\172\end{matrix}\right.\)
b) \(A\left(x\right)=x^4+2x^3-55x^2+172x-156\)
\(A\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2+7x+6\right)\)
Giải \(x^2+7x-26\) được \(x_1=\dfrac{-7+3\sqrt{17}}{2};x_2=\dfrac{-7-3\sqrt{17}}{2}\)
Vậy \(S=\left\{2;3;\dfrac{-7\pm3\sqrt{17}}{2}\right\}\)