Vì hai đường cao AM và BN cắt nhau tại H nên CH là đường cao của Δ A B C và H là trực tâm tam giác ABC nên A, B, D sai, C đúng.
Chọn đáp án C
Vì hai đường cao AM và BN cắt nhau tại H nên CH là đường cao của Δ A B C và H là trực tâm tam giác ABC nên A, B, D sai, C đúng.
Chọn đáp án C
Câu 1: Cho ΔABC, hai đường cao AM và BN cắt nhau tại H. Em chọn phát biểu đúng:
A. H là trọng tâm của ΔABC
B. H là tâm đường tròn nội tiếp ΔABC
C. CH là đường cao của ΔABC
D. CH là đường trung trực của ΔABC
Cho tam giác ABC vuông tại A,tia phân giác góc B cắt cạnh AC tại M.Kẻ MD vuông góc với BC tại D.
a)Chứng minh: góc BMA = góc BMD
b)Gọi E là giao điểm của hai đường thẳng MD và BA Chứng minh:AC=DE
c)Chứng minh: Δ A M E = Δ D M C
d)Kẻ DH ⊥ MC tại H và AK ⊥ ME tại K.Hai tia DH và AK cắt nhau tại N.Chứng minh:MN là phân giác của góc KMH
e)Chứng minh:Ba điểm B,M,N thẳng hàng g)Chứng minh:BN ⊥ AD,BN ⊥ EC
h) Δ ABC thỏa mãn điều kiện gì để Δ NAD là tam giác đều
Cho ΔABC cân tại A, có góc A=120 độ. Các đường trung trực của 2 cạnh AB,AC cắt tại O và cắt BC lần lượt tại E và F.CMR:
a)AO là trung trực của BC
b)E,F lần lượt là trọng tâm của ΔAOB vàΔAOC
c)BE=EF=FC
1 ) Cho Δ ABC , D là trung điểm của AB . Đường thẳng qua A và song song với BC cắt AC tại E , đường thẳng qua E và song song với AB cắt BC tại F . Chứng mình rằng :
a ) AD = EF
b ) Δ ADE = Δ EFC
c ) AE = EC
2 ) Cho Δ ABC , D là trung điểm của AB , E là trung điểm của AE . Vẽ điểm F sao cho E là trung điểm của DF . Chứng minh rằng :
a ) DB = CF
b ) Δ BDC = Δ FCD
c ) DE // BC và DE = 1/2 BC
Cho Δ ABC cân tại A. Kẻ AH vuông góc với BC tại H. Qua H kẻ đường thẳng // với AC cắt AB tại D
a) CM: Δ ABH = Δ ACH
b) CM: Δ ADH cân và DH = \(\dfrac{1}{2}\)AB
c) gọi G là giao điểm của AH và CD. Qua A kẻ đường thẳng // BC cắt đường thẳng BG tại K. CM: AB // CK
Cho tam giác ABC cân tại A (góc A<90 độ) các đường cao BD và CE ( D∈AC; E∈AB ) cắt nhau tại H
a. Chứng minh Δ ABD= Δ ACE
b. Chứng minh Δ BHC là tam giác cân
c. So sánh HB và HD
d. Trên tia đối EH lấy điểm N sao cho NH<HC; Trên tia đối của tia DH lấy điểm M sao cho MH=NH. Chứng minh các đường thẳng BN;AH;CM đồng quy
Cho tam giác ABC vuông tại A có , đường cao AH. Trên tia đối của tia HB lấy điểm M sao cho HM = HB.
a) Chứng minh rằng HB < HC.
b) Chứng minh rằng AHB = AHM. Từ đó suy ra ABM là tam giác đều.
c) Gọi N là trung điểm của AC và O là giao điểm của AM và BN. Biết AB = 4 cm, tính độ dài đoạn thẳng AO.
Cho Δ ABC vuông tại B, BC = 15 cm, BA = 8 cm. Trên cạnh BC lấy E sao cho BE = BA
a) Tính AC
b) Δ ABE là tam giác gì? Vì sao
c) Từ B kẻ đường thẳng vuông với AE tại H và cắt AC tại D. Chứng minh BD là tia phân giác của góc ABC
d) Gọi I là giao điểm của đường thẳng AD và DE. Chứng minh A song song IC
Cho Δ ABC cân có góc A = 120°. Vẽ tia phân giác AI ( I ∈ BC ). Từ I vẽ IH vuông góc AB tại H, IK vuông góc AC tại K, trên đoạn HB lấy N sao cho HM = KN
a) Chứng minh Δ IMN cân
b) Chứng minh HK song song MN
c) Từ C vẽ đường thẳng d ⊥ BC cắt tia BA tại E. Biết CE = 8 cm. Tính CK và HK
THANKS MN
Cho Δ ABC cân tại A. Trung điểm AM
a) CMR : ΔABM = ΔACM
b)Tính BC biết AB=5cm, AM = 4cm
c) Gọi G là trọng tâm của Δ ABC. BG cắt AC tại E. CMR :AM +BE=3ME
HELP ME, ĐANG GẤP Ạ
Cho Δ ABC, ba đường thẳng a, b, c lần lượt là đường trung trực của BC, AC, AB. Chứng minh a ∩ b ∩ c = {0} và OA = OB = OC