Ta có \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow x^2+y^2+z^2\ge1\)
Áp dụng BĐT Cauchy-Schwarz:
\(P\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{2}\ge\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{\sqrt{3}}{3}\)