§1. Bất đẳng thức

PT

Cho các số thực dương \(a,b,c\) thỏa mãn \(a+b+c\le3\). Tìm giá trị nhỏ nhất của biểu thức:

\(M=\dfrac{a^2+6a+3}{a^2+a}+\dfrac{b^2+6b+3}{b^2+b}+\dfrac{c^2+6c+3}{c^2+c}\)

H24
9 tháng 7 2017 lúc 14:51

Ta có:\(\sum\dfrac{a^2+6a+3}{a^2+a}=\sum\left(1+\dfrac{5a+3}{a^2+a}\right)=3+\sum\dfrac{5a+3}{a^2+a}\)

Có BĐT phụ: \(\dfrac{5a+3}{a^2+a}\ge-\dfrac{7}{2}a+\dfrac{15}{2}\)đúng vì nó tương đương \(\left(7a+6\right)\left(a-1\right)^2\ge0\left(true\right)\)

Áp dụng tương tự ta có:

\(VT\ge3-\dfrac{7}{2}\left(a+b+c\right)+\dfrac{15}{2}.3\ge3-\dfrac{21}{2}+\dfrac{45}{2}=15\)

Dấu = xảy ra khi a=b=c=1

Bình luận (9)

Các câu hỏi tương tự
PO
Xem chi tiết
NM
Xem chi tiết
DH
Xem chi tiết
LH
Xem chi tiết
PT
Xem chi tiết
NV
Xem chi tiết
NH
Xem chi tiết
PO
Xem chi tiết
NT
Xem chi tiết