§1. Bất đẳng thức

NT

Cho các số thực dương a,b. Chứng minh rằng:

a/ \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}\ge\dfrac{13}{2}\)

b/ \(\dfrac{a}{3b}+\dfrac{b\left(a+b\right)}{a^2+ab+b^2}\ge1\)

c/ \(\dfrac{a}{2b}+\dfrac{2b}{a+b}+\dfrac{ab}{2\left(a^3+2b^3\right)}\ge\dfrac{5}{3}\)

AH
24 tháng 5 2018 lúc 11:07

a) Sai với \(a=1,b=2\)

b)

Thực hiện biến đổi tương đương:

\(\frac{a}{3b}+\frac{b(a+b)}{a^2+ab+b^2}\geq 1\)

\(\Leftrightarrow \frac{a}{3b}+\frac{b(a+b)+a^2}{a^2+ab+b^2}-\frac{a^2}{a^2+ab+b^2}\geq 1\)

\(\Leftrightarrow \frac{a}{3b}-\frac{a^2}{a^2+ab+b^2}\geq 0\)

\(\Leftrightarrow \frac{1}{3b}-\frac{a}{a^2+ab+b^2}\geq 0\)

\(\Leftrightarrow \frac{a^2+ab+b^2-3ab}{3b(a^2+ab+b^2)}\geq 0\)

\(\Leftrightarrow \frac{(a-b)^2}{3b(a^2+ab+b^2)}\geq 0\) (luôn đúng)

Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b$

c) BĐT sai với \(a=1,b=2\)

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
NV
Xem chi tiết
PT
Xem chi tiết
PL
Xem chi tiết
PT
Xem chi tiết
TT
Xem chi tiết