NT

Cho các số thực a,b,c thỏa mãn điều kiện \(a\ge1,b\ge1,c\ge1\)

Chứng minh rằng : \(\dfrac{1}{2a-1}+\dfrac{1}{2b-1}+\dfrac{1}{2c-1}+\dfrac{4ab}{ab+1}+\dfrac{4bc}{bc+1}+\dfrac{4ac}{ac+1}\ge9\)

 

NL
6 tháng 3 2021 lúc 0:42

\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)

\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)

Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)

\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)

\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)

\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
MN
Xem chi tiết
MY
Xem chi tiết
MH
Xem chi tiết
H24
Xem chi tiết
HP
Xem chi tiết