ab+ac+bc
=1/2[(a+b+c)^2-(a^2+b^2+c^2)]
=1/2(9-29)=-10
=>a^2b^2+b^2c^2+a^2c^2=(ab+bc+ac)^2-2abc(a+b+c)
=(-10)^2-2*11*3=34
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=3*(29+10)=117
=>a^3+b^3+c^3=150
a^5+b^5+c^5
=(a^3+b^3+c^3)(a^2+b^2+c^2)-(a^3b^2+a^2c^2+a^2b^3+b^3c^2+a^2b^3+b^2c^3)
=(a^3+b^3+c^3)(a^2+b^2+c^2)-[(a^2b^2+b^2c^2+c^2a^2)(a+b+c)-abc(ab+ac+bc)]
=150*29-[34*3-11*(-10)]
=4138