Ôn thi vào 10

DL

cho các số thực không âm a,b,c chứng minh:

1, \(a^3+b^3\)\(ab\left(a+b\right)\)

2, \(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\)\(\dfrac{1}{abc}\) (với a,b,c>0)

3, \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)≥8abc

mng tham khảo giải giúp em vớiii

NT
11 tháng 4 2023 lúc 8:49

3: \(\left\{{}\begin{matrix}a+b>=2\sqrt{ab}\\b+c>=2\sqrt{bc}\\a+c>=2\sqrt{ac}\end{matrix}\right.\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)>=8abc\)

1: =>(a+b)(a^2-ab+b^2)-ab(a+b)>=0

=>(a+b)(a^2-2ab+b^2)>=0

=>(a+b)(a-b)^2>=0(luôn đúng)

Bình luận (1)
TH
11 tháng 4 2023 lúc 15:01

2) Áp dụng bất đẳng thức ở câu 1 ta có:

\(\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{ab\left(a+b\right)+abc}=\dfrac{1}{ab\left(a+b+c\right)}\)

Tương tự: \(\dfrac{1}{b^3+c^3+abc}\le\dfrac{1}{bc\left(a+b+c\right)}\)

và \(\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ca\left(a+b+c\right)}\)

Cộng vế theo vế của các bất đẳng thức trên ta được:

\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{1}{a+b+c}.\dfrac{a+b+c}{abc}=\dfrac{1}{abc}\left(đpcm\right)\)

Dấu "=" xảy ra khi a=b=c.

Bình luận (1)

Các câu hỏi tương tự
MY
Xem chi tiết
H24
Xem chi tiết
GC
Xem chi tiết
PO
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
NN
Xem chi tiết
NM
Xem chi tiết