Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

LD

Cho các số nguyên dương x,y,z thoả x+y+z =3. Cm \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

NL
13 tháng 5 2020 lúc 19:59

\(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\)

Tương tự ta có:

\(\frac{y^3}{y^2+z^2}\ge y-\frac{z}{2}\) ; \(\frac{z^3}{z^2+x^2}\ge z-\frac{x}{2}\)

Cộng vế với vế:

\(VT\ge x+y+z-\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\left(x+y+z\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
KM
Xem chi tiết
KZ
Xem chi tiết
TG
Xem chi tiết
TT
Xem chi tiết
LT
Xem chi tiết
HT
Xem chi tiết
PB
Xem chi tiết
HB
Xem chi tiết