Violympic toán 9

LT

Cho x,y,z là các số thực dương, tìm GTNN của biểu thức

P=\(x^2+y^2+z^2+\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}-\frac{7}{6}\left(x+y+z\right)\)

NL
27 tháng 10 2019 lúc 11:03

Vấn đề duy nhất của bài này là đánh giá cụm \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\)

Trước hết, ta chứng minh bổ đề sau:

Với hai dãy số dương \(x\ge y\ge z\)\(a\ge b\ge c\) ta luôn có: \(ax+by+cz\ge bx+cy+az\)

\(\Leftrightarrow\left(a-b\right)x+\left(b-c\right)y+\left(c-a\right)z\ge0\)

\(\Leftrightarrow\left(a-b\right)x-\left(a-b\right)y+\left(a-c\right)y-\left(a-c\right)z\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(x-y\right)+\left(a-c\right)\left(y-z\right)\ge0\) (luôn đúng)

Không mất tính tổng quát, giả sử \(x\ge y\ge z\Rightarrow\left\{{}\begin{matrix}x^3\ge y^3\ge z^3\\\frac{1}{y^2+z^2}\ge\frac{1}{z^2+x^2}\ge\frac{1}{x^2+y^2}\end{matrix}\right.\)

Áp dụng bổ đề ta có:

\(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{y^3}{y^2+z^2}+\frac{z^3}{z^3+x^2}+\frac{x^3}{x^2+y^2}\)

Mặt khác: \(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{1}{2}y\)

Tương tự và cộng lại: \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{x^2+z^2}\ge\frac{1}{2}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{3}\left(x+y+z\right)^2+\frac{1}{2}\left(x+y+z\right)-\frac{7}{6}\left(x+y+z\right)\)

\(P\ge\frac{1}{3}\left(x+y+z\right)^2-\frac{2}{3}\left(x+y+z\right)+\frac{1}{3}-\frac{1}{3}\)

\(P\ge\frac{1}{3}\left(x+y+z-1\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)

\(P_{min}=-\frac{1}{3}\) khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
LT
3 tháng 10 2019 lúc 14:53

@Nguyễn Việt Lâm Anh ơi giúp em nốt bài với ạ !!!

Bình luận (0)
 Khách vãng lai đã xóa
LT
3 tháng 10 2019 lúc 14:53

@Vũ Minh Tuấn HISINOMA KINIMADO Nguyễn Huy Thắng

Giúp mình với !!!

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 10 2019 lúc 14:53

Dễ dàng chứng minh được \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{x+y+z}{2}\)(khi nào rảnh em gõ ha! Giờ lười lắm:v)

Do đó \(P\ge x^2+y^2+z^2+\frac{x+y+z}{2}-\frac{7}{6}\left(x+y+z\right)\)

\(\ge\frac{\left(x+y+z\right)^2}{3}-\frac{2}{3}\left(x+y+z\right)=\frac{t^2-2t}{3}\) (đặt t = x+y+z)

\(=\frac{\left(t^2-2t+1\right)-1}{3}=\frac{\left(t-1\right)^2-1}{3}\ge-\frac{1}{3}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=y=z\\t=x+y+z=1\end{matrix}\right.\Leftrightarrow x=y=z=\frac{1}{3}\)

P/s: Is that true?

Bình luận (0)
 Khách vãng lai đã xóa
LT
25 tháng 10 2019 lúc 19:39

@Nk>↑@ giúp mình với !!

Bình luận (0)
 Khách vãng lai đã xóa
LC
3 tháng 11 2019 lúc 15:50

@Akai Haruma bài này còn cách nào ngắn hơn ko ạ !!?

Bình luận (0)
 Khách vãng lai đã xóa
NC
7 tháng 11 2019 lúc 20:35

Akai Haruma bài này có thể giải bằng cách nào khác nx ngoài cách trên ko ạ .

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KS
Xem chi tiết
MK
Xem chi tiết
TA
Xem chi tiết
KS
Xem chi tiết
NH
Xem chi tiết
PV
Xem chi tiết
AJ
Xem chi tiết
AJ
Xem chi tiết
H24
Xem chi tiết