Violympic toán 9

PB

Cho các số x, y, z dương. Chmr:

\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)

NL
10 tháng 10 2019 lúc 14:48

Áp dụng BĐT Cauchy:

\(\frac{x^2}{y^2}+1+\frac{y^2}{z^2}+1+\frac{z^2}{x^2}+1\ge2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\)

\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}+3\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3\sqrt[3]{\frac{xyz}{xyz}}=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3\)

\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)

Bình luận (0)

Các câu hỏi tương tự
LD
Xem chi tiết
KM
Xem chi tiết
KZ
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết
HT
Xem chi tiết
HH
Xem chi tiết
HH
Xem chi tiết
NM
Xem chi tiết